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Abstract

An electronic aroma detection (EAD) technology known as conductive polymer analysis (CPA) was evaluated as a means of
identifying and discriminating woody samples of angiosperms and gymnosperms using an analytical instrument (electronic
nose) that characterizes the aroma profiles of volatiles released from excised wood into sampled headspace. The instrument
measures electrical-resistance changes generated by adsorption of volatiles to the surface of electroactive, polymer-coated
sensors. Unique digital electronic fingerprints of wood aromas, derived from multisensor-responses to distinct mixtures of wood
volatiles, were obtained from woods of individual tree species. A reference library containing aroma signature patterns for 23
tree species was constructed for identifications of unknown samples using pattern-recognition algorithms. The 32-sensor array
used with an Aromascan A32S instrument was sensitive to a wide diversity of organic compounds and produced outputs of
distinct electronic aroma signature patterns in response to wood volatiles that effectively identified unknown samples from
individual tree species included in the reference library. Some potential applications of CPA methods for research in ecology,
forestry, plant taxonomy, and related disciplines were identified with some significant advantages and limitations. Other
applications of this technology were discovered for the management of forested stands and ecosystems based on the
identification of roles that wood-inhabiting organisms play in stand dynamics and long-term ecosystem functions. Results
pertaining to tree systematics and phylogeny are discussed in the context of prevailing opinions of oak taxonomy.
¢ 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Analytical methods are needed in forest ecology
research to provide reliable means of identifying
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used for wood identification hitherto are cumbersome
because they often require extensive sample prepara-
tion and analysis. New methods yielding rapid woody
sample identifications could facilitate determinations
of biological activities, interactions, and ecological
roles of microorganisms, insects, and other inverte-
brates that interact with wood in living and dead trees
or coarse woody debris on the forest floor. Organisms
associated with wood in forest ecosystems are
involved in such activities as wood decomposition,
nutrient cycling, and other functional niches that affect
forest stand structure, dynamics, and ecosystem
processes (Andrews and Harris, 2000; Hansen and
Goheen, 2000; Whipps, 2001). Many microbes have
effects on forest health and ecosystem functions
because they include causal agents of tree mortality,
forest diseases, wood decay, and lumber defects of
importance in ecosystem and timber management, and
in the manufacture of forest products. Also, certain
types of ecological studies in forest science and related
research disciplines have need of specialized analy-
tical equipment capable of quickly recognizing and
discriminating between various types of woody
samples with minimal destructiveness during sam-
pling. Such instruments and methods are needed with
the capability of providing these determinations based
on a rapid chemical means of detection. Elaborate
analytical methods such as gas chromatography—-mass
spectroscopy are only capable of identifying the
chemical compounds present in wood, but this
information does not necessarily provide the informa-
tion needed for wood identifications.

There are numerous instances where woody
samples collected for research purposes are not
readily identifiable because of the difficulty in
determining individual source trees from which
woody samples were derived, or because samples
were taken from woody plants during times of the year
when identifying characters (flowers, fruits, and
leaves, etc.) are absent. Analytical tools and methods
capable of identifying woody samples within these
limitations are essential for characterizing and
determining the roles, damaging effects, and inter-
relationships among wood-feeding and wood-inhabit-
ing organisms that interact with trees in forest stands
and ultimately affect forest health, stand structure,
composition, stability, ecosystem processes, and forest
dynamics over time. Such capabilities were made

possible with the invention of instruments called
“electronic noses™ that were designed to produce
digital electronic signatures of volatiles released from
any organic source (Dodd and Persaud, 1982; Pelosi
and Persaud, 1988: Shirley and Persaud, [990;
Persaud, 1992; Persaud et al., 1993). Unlike other
analytical instruments, these devices allow the
identification of organic samples without having to
identify individual chemical components within the
volatile mixture (Gardner, 1991; Davide et al., 1995;
Lonergan et al., 1996), and avoid operator fatigue
(Shurmer, 1990; Gardner and Shurmer, 1992).
Agricultural and food industries have utilized con-
ductive polymer analysis (CPA), a type of electronic
aroma detection (EAD) technology, to measure
product and food quality (Aishima, 1991; Hanaki
et al,, 1996; Bartlett et al., 1997), storage life (Di
Natale et al., 1995, 1996), freshness (Egashira, 1997),
agricultural waste detection (Hobbs et al., 1995:
Persaud et al.. 1996), recognition of organic chemicals
(Kowaiski and Bender, 1972), diagnosis of plant
diseases (Wilson et al., 2004), and many other
applications (Ouellette, 1999; Yea et al., 1994).
Within the field of forest pest management, CPA
has proven useful in the detection of bacterial
wetwood infections in cottonwood, the detection
and identification of fungal forest pathogens (e.g.
Ceratocystis fagacearum), and the discrimination of
wood decay fungi in woody samples (Wilson and
Lester, 1999; Wilson et al., 2004). A variety of
different sensor types have been developed for these
various applications including optical sensors (White
et al., 1996), metal oxides (Shurmer et al., 1989;
Egashira and Shimizu, 1993: Nanto et al., 1993),
semiconductive polymers (Meyerhoff, 1993; Yim
et al., 1993; Pisanelli et al., 1994), and conductive
polymers (Hatfield et al., 1994; Freund and Lewis,
1995; Lonergan et al., 1996).

An electronic nose typically consists of a multi-
sensor array, an information-processing system such
as an artificial neural network (ANN), software with
digital pattern-recognition algorithms, and reference-
library databases (Abe et al., 1988; Freund and Lewis.
1995; Gardner, 1991: Gardner and Shurmer, 1992;
Kowaiski and Bender, 1972). The sensor array consists
of incrementally different sensors that respond to a
wide range of chemical classes and discriminate
diverse mixtures of possible analytes. The output from
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individual sensors are assembled and integrated to
produce a distinct digital pattern of responses (aroma
fingerprint) called an electronic aroma signature
pattern (EASP), allowing classification and identifica-
tion of the analyte. Using EASPs, representing unique
aroma signature patterns for complex mixtures of
distinctive aromas in the sample mixture, allows
recognition of the samiple as a whole without requiring
the mixture to be separated into its individual
components prior to or during analysis. A reference
library of EASPs for known samples is constructed
prior to analysis of unknowns by assigning descriptor
names (identifiers) to patterns of known origin. The
ANN is configured through a learning process (neural
net training) using pattern-recognition algorithms that
look for differences between the patterns of all the
descriptor types included in the reference library. This
process continues until a previously selected level of
discrimination is met. The results are validated and
assembled into the reference library to which
unknown samples can be compared. Identification
of unknowns is based on the distribution of aroma
attributes or elements that the analyte pattern has in
common with patterns present in databases of the
reference library.

This investigation focuses on the potential applica-
tion of conductive polymers for the identification of
woody samples for forest ecology and related
research. The objectives of this study were to: (i)
evaluate the feasibility of using CPA technology as a
means of identifying and discriminating woods of
angiosperms and gymnosperms based on electronic
signatures of volatiles released from excised wood
cores, (ii) develop CPA methods and applications
useful for forest ecology through woody plant
identifications, and (iii) examine the potential applic-
ability of these methods to plant taxonomy and for
determining chemical relatedness between plant
species. Some preliminary results of this work were
reported previously (Wilson and Lester, 1999).

2. Materials and methods

2.1. Collection and storage of woody samples

Increment cores of standard dimensions (5 mm
diameter x 5 cm length) were collected in winter and

early spring from sapwood tissues of plants represent-
ing 23 species of trees and shrubs from 14 plant
families typical of bottomland and upland forest types
in the southern United States (Table 1). Two tree cores
were extracted from the boles of at least 10 individual
living trees of each species from various locations
(stands) using a Haglof tree increment borer (Forest
Suppliers, Inc., Jackson, MS) and placed into 14.8 mm
glass vials. Increment cores used in the analysis were
collected primarily from healthy trees, although some
cores were collected from diseased tissues of trees for
comparison with healthy cores of the same tree species
to investigate limitations on applications of the
methods. Woody cores in all cases were frozen at
—~20 °C in long-term storage and thawed immediately
prior to sample analysis. Cores that became desiccated
due to sublimation during storage were rehydrated by
soaking in sterile distilled water for 15 min followed
by blotting on Chemwipe tissue paper to remove
excess free moisture immediately prior to analysis.

2.2. Sample preparation and prerun procedures

Woody core samples in 14.8 ml glass vials were
uncapped and placed into a 500 ml glass sampling bottle
fitted with reference air, sampling, and exhaust ports on
a polypropylene bottle cap. Reference air entered the
sampling bottle through a 3 mm polypropylene tube
extending to just above the bottom of the sampling
bottle. The sampling bottle was held in the sampling
chamber within the instrument at a constant air
temperature of 25 "C. The sampling bottle was purged
with filtered, moisture-conditioned reference air for
2 min prior to building headspace. The sampling bottle
was sealed and volatiles from the sample were allowed
to build headspace and equilibrate for 30 min prior to
each run. Prerun tests were performed as needed to
determine sample air relative humidity (RH) compared
with that of reference air. Reference air was set at 4%
RH for most runs and adjusted to within 2% below
sample airat 25 “C. The sampling bottle cap and exhaust
port were opened between runs to purge the previous
sample with conditioned reference air.

2.3. Instrument configuration and run parameters

All analyses were conducted with an Aromascan
A32S (Osmetech, Inc., Wobum, MA) instrument fitted
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Table 1
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Types and sources of tree species from which woody samples were collected for use in constructing reference libraries of electronic aroma

signatures by conductive polymer analysis

Tree species

Common name

Plant family

Stand type®

Collection site

Acer rubrum
Carpinus caroliniana
Carya illinoensis
Carva tomentosa
Celtis laevigara
Cornus florida
Diospyras virginiana
Hex opaca
Liquidambar styraciflua
Platanus occidentalis
Populus deltoides
Prosopis glandulosa
Quercus alba
Quercus buckleyi
Quercus falcata
Quercus marilandica
Quercus nigra
Quercus stellata
Quercus virginiana
Salix nigra

Sassafras albidum
Taxodium distichum
Ulmus crassifolia

Red maple
American hornbeam
Pecan

Mockernut hickory
Sugarberry
Flowering dogwood
Common persimmon
American holly
Sweetgum
Sycamore

Eastern cottonwood
Honey mesquite
White oak

Spanish oak
Southern red oak
Blackjack oak
Water oak

Post oak

Coastal live oak
Black willow
Sassafras
Baldcypress

Cedar elm

Aceraceae Upland Union Co.. AR
Betulaceae Bottomland Washington Co.. MS
Juglandaceae Upland Washington Co.. MS
Juglandaceae Upland Union Co.. AR
Ulmaceae Bottomland Washington Co., MS
Cornaceae Upland Union Co.. AR
Ebenaceae Upland Washington Co.. MS
Aquifoliaceae Upland Union Co., AR
Hamamelidaceae Upland Washington Co.. MS
Platanaceae Upland Washington Co.. MS
Salicaceae Bottomland Washington Co.. MS
Fabaceae Upland Travis Co.. TX
Fagaceae Upland Union Co.. AR
Fagaceae Upland Travis Co., TX
Fagaceae Upland Union Co., AR
Fagaceae Upland Union Co.. AR
Fagaceae Bottomland Washington Co., MS
Fagaceae Upland Travis Co., TX
Fagaceae Upland Travis Co., TX
Salicaceae Bottomland Union Co., AR
Lauraceae Upland Union Co., AR
Taxodiaceae Bottomland Washington Co., MS
Ulmaceae Upland Travis Co., MS

* Type of forest stand based on position of collection site relative to surrounding topography. Upland sites were generally close to the tops of

ridges or at positions above drainage areas. and bottomland sites were close 10 water courses or within drainage areas.

with a conventional 32-sensor array designed for
general-use applications with 15 V across sensor paths.
Prior to analysis of known and unknown volatiles from
woody plant tissues in this study, individual sensors in
the sensor array were characterized and calibrated by
testing sensitivity responses to representative com-
pounds from difterent classes of organic compounds
potentially relevant to wood identifications. Among
compounds present in wood volatiles, sensors were
more sensitive to long-chain alcohols, long-chain
esters, and aromatic hydrocarbons, and slightly less
sensitive to short-chain esters and aliphatic ketones.
However, sensors were most sensitive to amines and
sulfur-containing compounds not normally found in
wood volatiles. The response sensitivities of individual
sensors, measured as percent changes in resistance
response across sensor paths relative to base resistance
(FAR/Ryy0). varied with the type of plastic polymer
used in the sensor matrix coating, the type of ring-
substitutions used to modify its conductive properties,
and the type of metal ions used to dope the matrix to

improve and modulate sensor response. Detailed results
of analyses that provided prior characterization and
calibration of the sensor array were reported previously
(Wilson et al., 2004).

The block temperature of the sensor array was
maintained at a constant 30 "C. Reference air was
preconditioned by passing room air sequentially
through a carbon filter, silica gel beads, inline filter,
and Hepa filter to remove organic compounds,
moisture, particulates, and microbes, respectively,
prior to humidity control and introduction into the
sampling bottle. The flow rate (suction) of sample air
at the sampling port was maintained at —702 ml/min
using a calibrated ADM 3000 flow meter (Agilent
Technologies, Wilmington, DE). Sensors were purged
between runs using a 2% isopropanol wash solution.
The instrument was interfaced with a personal
computer via an RS232 cable and controlled with
Aromascan Version 3.51 software. The instrument
plumbing was altered from conventional architecture
and specifically configured for static sampling of the
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headspace by allowing air flow, maintained at 605 ml/
min flow rate, coming out of the external vent (bag-
fill) port of the instrument during analytical runs, and
closing the exhaust port on the sampling bottle so that
headspace volatiles were taken from a homogeneous
static air mass within the sampling bottle.

2.4. Data acquisition parameters and run schedules

Data from the sensor array were collected at | s
intervals using a 0.2 detection threshold ( y-units), a
15-20 y-max graph scale, and with a pattern average
of five data samples taken per run during data
acquisition. A uniform run schedule (I valve
sequence) was used and consisted of reference air
20 s, sampling time 90 s, and wash 20 s, followed by
90 s of reference air for a total run time of 220s. A
2 min reference air purge followed by a 30 min
equilibration period was allowed between runs.

2.5. Construction of reference libraries and
validation

An aroma signature reference library was con-
structed from wood samples of all known reference
woods of angiosperm and gymnosperm species
included in this study. All database files were linked
to specific (designated) aroma classes defining each
sample type or category. The following recognition
network options (neural net training parameters) were
used for each training session: training threshold = 0.60,
recognition threshold = 0.60, number of elements
allowed in error = 5, learning rate = 0.10, momentum =
0.60, error goal = 0.010 (P < 0.01), hidden nodes = 5,
maximum iterations (epochs) = 10,000, using normal-
ized input data, not actual intensity data. Some of these
parameters were modified as described in the results for
specific applications or for improvement of recognition
accuracy. A typical training required 2-35 min,
depending on the size of the database applied. using
an IBM-compatible personal computer with a minimum
of 64 mb of RAM and 350 MHz run speed. Neural
net trainings were validated by examining training
results that compare individual database files for
compatibility or by similarity matches to each specific
odor classes by test-assigned odor class distributions
among related odor classes included in each library.

[l

2.6. ldentification of unknowns using recognition

files

A reference library, constructed from electronic
aroma signature patterns (EASPs) of headspace
volatiles from 23 known woods, was used for
comparison and identification of unknown samples.
This was accomplished either in real time or by using
off-line analysis using a recognition file (containing
databases) created from the reference library. In each
case, the neural net compared the response pattern of the
unknown sample with databases found in the recogni-
tion file. The pattern-recognition algorithms quickly
determined a best match that most closely fit the aroma
elements found in the unknown sample. The closeness
of the match was expressed as a percentage value
allocated to different global classes (individual tree
species) represented in the sample. A value greater than
90% was considered to be a good match. Global class
distributions of major and minor identification elements
were used for determinations of relatedness between
sample types. The neural net software had settings that
allow for training to any level of significance that was
desired in discriminating samples. A significance level
of 0.05 or lower was used depending on the level of
specificity desired in the discrimination.

2.7. Instrument reliability in identifications

The reliability of the instrument and methods to
accurately identify sample unknowns was tested by
collecting two cores per tree from 13 to 30 individual
trees for each of 12 tree species. Analyzed samples
were determined to be either correctly identified, not
identified (indeterminate), incorrectly identified, or
ambiguously identified based on recognition results
obtained from pattern-recognition software using the
tree reference library. Determinations falling outside
of the domain of defined global classes were recorded
as unknown. Ambiguous determinations were indi-
cated when samples were identified in ditferent global
classes from separate runs.

2.8. Data processing, manipulations, and statistical
evaluations

Data slices for processing and analysis were taken
from a 20 s sampling interval (85-105 s) near the end
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of the sampling segment of each run before the
sampling-valve closed. The data slice from the raw
data file was used to create a representative descriptor
database file. A minimum of 10 descriptor database
files were created from separate specimens of each
sample type. Aroma signature patterns of individual
aroma classes (descriptors) were reported from
calculated means = S.EM. (standard errors of the
mean) of raw relative resistance sensor values from
runs of at least 10 different samples of each odor class.
Real time determinations of unknowns utilized
recognition files with normalized sensor intensity
responses and pattern-recognition algorithms and
matrices.

2.9. Principal component analvsis

Detailed comparisons of relatedness of odor classes
were determined using principal component analysis
(PCA) algorithms provided by Aromascan Version
3.51 software. Three-dimensional PCA was used to
distinguish between headspace volatiles released from
seven Quercus species, including Q. alba, Q. buckleyi,
Q. falcara, Q. marilandica, Q. nigra, Q. stellata, and
Q. virginiana. The mapping parameters for three-
dimensional PCA were: iterations = 30, units in Eigen
values (%), and with normalized input data.

3. Results
3.1. Sensor responses to headspace volatiles

The detection limits and sensitivity of the A32S
instrument were dependent on the classes of organic
components present in the sample and the combined
sensitivities of the sensor array. Highly polar
compounds like carboxylic acids tended to bind and
accumulate on  some sensors causing negative
responses in some cases at higher concentrations.
This was observed here when cores were taken from
oaks that were infected with wetwood bacteria. The
bacterial species responsible for causing wetwood in
eastern hardwoods, particularly in Quercus species.
commonly produce carboxylic acids as fermentation
products released from anaerobic respiration. Sensor 7
was most sensitive to carboxylic acids and amines,
although other sensors (17, 18, 22-24, 28) also were
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strongly sensitive to carbonyl compounds (carboxylic
acids, aldehydes, esters, and ketones), alcohols,
aromatics, and chlorinated hydrocarbons.

The sensor array was highly responsive to water
vapor present in the sample headspace. This strong
response to water necessitated controlling the RH of
the sample air to 4% to assure that the sensor response
was positive, with the exception of some sensors that
responded negatively to the presence of carboxylic
acids. Thus, conditioning of reference air to 4% RH,
controlled by a prerun setting on the instrument
control panel, was necessary before building head-
space prior to analysis.

A number of factors affected quality, stability, and
uniformity of runs during data acquisition. Sensor
output was sensitive to sample size. Control of sample
size provided standardized quantities of headspace
volatiles being analyzed. Sampling methods also had a
large impact on uniformity of signal output from the
sensor array. Static sampling used here provided more
uniform and stable data output than dynamic stripping
and equilibration sampling because it avoided the
dilution of headspace volatiles (increasing sensitivity)
and precluded perturbations of sampling air that
caused temporal variability in sample concentration
during the run. The instrument architecture used here
was modified so that sample air could be vented during
sample introduction to avoid dilution effects. Samples
were introduced from a closed sampling bottle,
without reference air introduction, to maintain uni-
form sample concentrations during data acquisition.

3.2, Reliabiliry of unknown sample identifications

The reliability of CPA methods to correctly identify
unknown samples was evaluated with blind tests using
13-30 unknowns from 12 tree species included in the
reference library. All unknown samples from 9 of the
12 species tested were identified correctly (Table 2).
Approximately 92% of unknown samples from two
additional species, Carpinus caroliniana and Platanuts
occidentalis, were identified correctly, and the
remaining samples (8%) were determined to be
unidentified or unknown. The lowest level of correct
identification (86%) occurred with unknown samples
of Ligquidambar srvraciflua, and the remaining
samples (14%) remained unidentified. This was the
only species in which less than 90% of unknown



A.D. Wilson et al./Forest Ecology and Management 209 (2005 207-224 213

Table 2

Tests of the reliability of tree identifications for 12 species deter-
mined by CPA with the Aromascan A32S using recognition files
constructed from a 23-species tree reference library

Sample unknowns” n Correctly Indeterminate

identified” (%) not identified”
(%)
Carya illinoensis 13 100.0 0.0
Carva tomeniosa 13 100.0 0.0
Carpinus caroliniana 3 923 7.7
Celtis laevigata 17 100.0 0.0
Cornus florida 13 100.0 0.0
Liquidambar styraciflua 14 85.7 14.3
Platanus occidentalis 3 92.3 7.7
Quercus virginiana 30 100.0 0.0
Quercus stellata 131000 0.0
Salix nigra 131000 0.0
Sassafras albidum 13 1000 0.0
Taxodivum distichum 13 100.0 0.0

* Tree identifications of sample unknowns were determined from
two sapwood tree core samples from each of 13 to 30 replicate trees
as indicated for each species.

" Percentage of unknown samples identified correctly using appli-
cation-specific reference library.

 Unidentified samples resulted from a global class distribution
with less than 70% ownership in any one global class. None of the
sample unknowns were incorrectly or ambiguously identified.

samples were correctly identified. None of the
determinations resulted in incorrect or ambiguous
identifications. These results with the lower-perform-
ing tree species were subsequently improved up to 5%
in a second test (using the same unknowns) by
adjusting the specificity and sensitivity parameters
used during neural net training to enhance sample
recognition.

3.3. Comparison of EASPs of tree cores

The run characteristics of observed multisensor
outputs produced during data acquisition for all tree
species analyzed with the A32S instrument produced
relatively compressed low-resistance response curves
(<.5% above baseline resistance) for all 32 sensors in
the array. The sensor responses were so tightly
clustered in some cases that curves representing
individual sensors were not resolved completely in the
data acquisition window without reducing the range of
the y-axis display scale. Nevertheless, sufficient
differences in individual sensor responses were
produced to allow discrimination among tree species.

Individual sensor response outputs within signature
patterns of individual tree species ranged from 0.1 to
2.6%, and were rarely greater than 2.5%. However,
sensor responses less than [.0% were common.
Statistical analysis showed high precision and low
variability of individual sensor responses between
analytical runs for any one sample type. No standard
errors of means for individual sensors were greater
than 0.2 intensity units, and most standard errors of
means were 0.1 or less.

A diversity of electronic aroma signatures were
derived from CPA of headspace volatiles from
sapwood cores of the 23 tree species examined.
Comparisons of compiled and statistically analyzed
EASPs resulting from CPA tests indicated that unique
electronic signature patterns were identified for each
species (Table 3). No combined outputs from the
sensor array were identical for any two tree species,
although identical intensity responses for any one
sensor were common among species. Widely varying
signature patterns were observed in most cases among
tree species from different genera. However, exam-
inations of EASPs of volatiles from closely related
tree species yielded mixed results. Large differences
were observed in signature pattern comparisons
between two Caryva species, C. illinoensis and C.
tomentosa, whereas great similarities were shared in
the signature patterns among Quercus species, with
the exception of Q. alba and Q. stellata. Analysis of
volatiles from Q. alba (white oak) and Q. stellata (post
oak). both in the white oak group (subgenus Quercus
section Quercus) of oaks, consistently produced
relatively low sensor response curves. By comparison,
the other five oaks tested were from the red/black oak
group (subgenus Quercus section Lobatae Loudon).
All of these red oak species produced consistently
high sensor response curves across the sensor array
relative to the white oak species tested.

Analyses of signature pattern differences among
angiosperm species and among species within the
genus Quercus were easily observed using simulta-
neous display mode of sensor outputs with non-
normalized data in line-graph format. Simultaneous
comparisons of seven angiosperm species indicated
different sensor-response patterns (Fig. 1A). CPA of
American hornbeam or ironwood (C. caroliniana)
volatiles produced the widest-ranging EASP with at
least 11 sensor responses that exceeded those of the
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other angiosperm species, and at least 5 sensor
responses that were lower than those of the other
angiosperm species. Volatiles from sycamore (P,
occidentalis) yielded the narrowest range of sensor
responses. The EASP of southern red oak (Q. falcara)
produced the highest mean sensor responses among
these seven angiosperms, and eastern cottonwood (£,
deltoides) exhibited the lowest mean sensor responses
in the group. Comparisons of response patterns for
Quercus species also indicated differences in signature
patterns, but Quercus EASPs were more clustered
within a narrower range and different from the EASPs
of other angiosperms (Fig. 1B). Volatiles from white
oak (Q. alba) produced a sensor-response pattern that
was strikingly different from those of the red oak
species, including water oak (Q. nigra), blackjack oak
(Q. marilandica), and southern red oak, but coastal
live oak (Q. virginiana) produced an EASP that was
intermediate in intensity between these two pattern
types, although closer to the patterns of red oaks than
to the white oak pattern.

A closer analysis comparing pairs of signature
patterns for individual species within a genus using
difference display mode revealed more precise differ-
ences in individual sensor responses within signature
patterns. Large differences were found in sensor
responses to volatiles of southern red oak (Q. falcara)
relative to white oak (Q. alba) using normalized data
(Fig. 2A). The majority (56%) of sensor responses for
southern red oak were greater than those for white oak.
The greatest differences (>0.5%) occurred in seven
sensors, three positive differences and four negative
differences. Sensor-response differences were skewed
to the positive side within the sensor range of 21-32,
whereas response differences appeared more random in
the sensor range of [-20. Differences in sensor
responses to volatiles of mockernut hickory (C.
tomentosa) relative to sweet pecan (C. illinoensis) were
much greater than for the Quercus species (Fig. 2B). The
number of differences of individual sensor responses
was evenly distributed in the positive and negative, but
the top set of sensors (21-32) was skewed to the negative
side in Carya species. The greatest differences (>0.5%)
occurred in eight sensors, four with positive differences
and four with negative differences. Similar differences
in signature patterns were obtained for the comparison
of Quercus species using nonnormalized data, except
that the differences were accentuated, and the curve was
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Fig. 1. Multiple comparisons of electronic aroma signature patterns for sapwood cores of seven hardwoods and five oak species using
superimpose mode (display function) following conductive polymer analysis. Simultaneous colored line graphs of actual (nonnormalized) sensor
array response [AR/Ry,.] percentages for: (A) A. rubrum (black). C. caroliniana (ved), C. laevigara (green). L. styraciflua (blue), P. deltoides
(cyan). P occidentalis (purple). Q. falcata (yellow); and (B) Q. alba (black), Q. falcata (red). Q. marilandica {green), Q. nigra (blue). and Q.
virginiana {cyan).

shifted more positive with most (90.6%) of the 3.4. Global class distributions of identification
difference in sensor responses above the zero baseline elements
on the y-axis (Fig. 2C). A similar shift to the positive
occurred for Carva volatiles using nonnormalized The recognition file created by neural net training
data (Fig. 2D). using sensor responses derived from CPA provided
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Fig. 2. Pairwise comparisons of differences in electronic aroma signature patterns for sapwood volatiles from Quercus and Carya species using
difference mode (display function) following conductive polymer analysis. Normalized sensor array response-difference [R| — R percentages.

indicated with bar graphs, between volatiles from: (A) southern red oak (Q. falcaia) relative to white oak (Q. alba): (B) mockernut hickory (C.

romentosa) relative to sweet pecan (C. illinoensis), and actual (nonnormalized) response-difference percentages for the same comparisons: (C)

southern red oak relative to white oak: and (D) mockernut hickory relative to sweet pecan. indicated by line grafts with the baseline at zero on the
Y-AXIS.
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useful information about the overlap in identification
elements, and thus relatedness, among trees included
in the reference database. Mean global class distribu-
tions of identification elements present in the validated
recognition file, determined from headspace volatiles
of 23 tree species, indicated that the majority of the
recognition capabilities for a given tree species in the
reference library were attributed to primary identifica-
tion elements found only in each respective species.
Well over 90% (range 94.1-99.4%) of the global class
distribution of identification elements for each species
were accounted for by these primary identification
elements unique to individual tree species (Table 4).

Secondary identification elements, defined as those
having distribution values less than 5% with any one
other species. also were found for all 23 tree species
tested. These values indicate relative amounts of

Table 5

shared elements between individual pairs and thus a
measure of relatedness based on the quantitative
distribution of these shared characters. Major second-
ary identification clements were defined as those
secondary elements with global class distributions of
>0.5% (but <5%) which were shared with at least one
other tree species. The numbers of major secondary
identification elements shared with other species
varied considerably in different tree species from
the highest number of elements shared in Tauxodium
distichum (5) and Cornus florida (4), down to one
shared element in Carpinus caroliniana, llex opaca,
Populus deltoides, and Q. alba; and no major
secondary identification elements shared with other
species by Carya tomentosa, Diospyros virginiana,
and Prosopis glandulosa. The highest recorded
distribution of 3.8% was found in sycamore (P

Incidence and distribution of major and minor secondary identification elements among 21 species of upland and bottomland hardwoods and

conifers

Tree species Major secondary identification elements®

Minor secondary identification elements”

Specific Mean Nonspecific Mean Specific Mean Nonspecific Mean

incidence distribution incidence distribution incidence distribution incidence distribution

(%) (%) (%) (%) (%) (%) (%) (%)
A. rubrum 10 0.6 5 0.5 30 0.2 25 0.2
C. caroliniana 5 0.8 0 0.0 15 0.2 20 0.3
C. florida 20 0.9 15 1.0 35 0.1 35 0.2
C. illinoensis 10 0.9 10 1.2 30 0.2 25 0.2
C. laevigata 15 1.0 10 1.4 20 0.2 25 0.2
C. tomentosa 0 0.0 0 0.0 25 0.2 20 0.2
D. virginiana 0 0.0 0 0.0 40 0.2 45 0.2
I opaca 5 1.4 10 1.0 35 0.2 20 0.2
L. stvraciflua 15 1.6 10 1.3 20 0.3 30 0.2
P. delwides 5 1.6 10 0.9 40 0.2 35 0.2
P. glandwlosa 0 0.0 5 0.5 40 0.2 30 0.2
P occidemalis 15 1.7 40 0.9 35 0.2 25 0.2
Q. alba S 0.6 5 0.5 25 0.2 15 0.2
Q. Jalcata 15 1.3 20 0.7 15 0.1 40 0.1
Q. marilandica 10 0.9 10 1.1 40 0.2 15 0.3
Q. nigra 15 0.7 15 0.7 25 0.2 10 0.1
Q. virginiana 10 0.6 0 0.0 0 0.0 15 0.2
S. albidum i 0.7 10 0.6 25 0.2 35 0.2
S. nigra 10 0.8 5 22 20 0.2 20 0.2
T. distichum 50 0.7 15 0.7 15 0.3 30 0.2
U. crassifolia 10 1.5 15 2.2 IS 0.2 30 0.2

* Major secondary identification elements account for >0.5% of global class distributions for any one tree species. Specific incidence indicates
the proportion of all species included in the comparison that shared unique identification elements specific to the indicated tree species.
Nonspecific incidence refers to identification elements that are not specific to just a relatively few species. but may be common among many

other species. Mean distributions are the actual average distribution percentage of elements shared between the indicated tree species and other

species.

" Minor secondary identification elements account for <0.5% of global class distributions for any one tree species.
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occidentalis)y which were shared with cedar elm
(Ulmus crassifolia). Eight major secondary elements
identified from other species also were found for P.
delroides, making cottonwood the species having the
most secondary elements that were specific to other
species. Volatiles from southern red oak (Q. falcata)
shared four secondary elements that were specific to
other species. By contrast, only one major secondary
identification element specific to cottonwood was
shared with another species, Q. marilandica. Only
four species including C. caroliniana, C. tomentosa.
D. virginiana, and Q. virginiana totally lacked major
secondary identification elements that were specific to
other species. Minor secondary identification ele-
ments were considered those with global class
distributions less than 0.5% which were shared with
at least one other tree species.

A more detailed analysis of the distribution of
secondary identification elements, among species
included in the recognition file, provided frequencies
of incidence and mean distributions that indicated
measures of relatedness among species (Table 5).
Baldcypress had the highest incidence (50%) of
specific major secondary identification elements that
were found in other species. Incidence of major
secondary elements was considerably lower (range 0—
20%) in other species, with mean distributions up to
1.7%. However, the incidence of minor secondary
clements was generally higher (range 15-40%) than
major elements for all species except coastal live oak,
with mean distributions up to 2.2%. The highest
incidences of minor secondary elements occurred in
common persimmon, eastern cottonwood, honey
mesquite, and blackjack oak.

Nonspecific incidence refers to identification
elements that are not specific to just a relatively
few species, but may be common among many other
species. The incidence of nonspecific secondary
elements was generally lower for the major identifica-
tion elements than for minor identification elements.
The highest incidence of major nonspecific elements
was determined for sycamore (40% ). but the incidence
was lower (range 0-20%) in all other species. Mean
distributions of major nonspecific elements (range 0~
2.2%) were slightly greater than distributions (0—
1.7%). Minor nonspecific elements occurred at a
higher range of incidence (10-45%) than major
nonspecific elements, with the highest incidence

found in common persimmon. Mean distributions of
all minor secondary elements were uniform in a
narrow range (0.1-0.3%) for both specific and
nonspecific identification elements.

3.5. Principal component analvsis (PCA) of oak
species

A detailed pairwise comparison of relatedness
between sapwood volatiles of seven oaks species using

Table 6

Pairwise comparisons of the relatedness of seven oak species using
three-dimensional principal component analysis of headspace vola-
tiles

Analyte |
Q. alba Quercus buckleyt
Quercus falcata
Q. marilandica
Q. nigra
Q. stellata
Q. virginiana

Analyte 2

QF significance”

Q. bucklevi Q. falcata

Q. marilandica

Q. nigra

Q. stellara

Q. virginiana
Q. falcata Q. marilandica 10.287"

Q. nigra

Q. srellata

Q. virginiana 4419
Q. marilandica Q. nigra

Q. stellara

Q. virginiana 2525
Q. nigra Q. stellata 25247

Q. virginiana 25707
Q. stellara Q. virginiana 23.12"7

* QF = quality factor. A quality factor value of 2.0 indicates a
significant discrimination at approximately P =0.10. The percen-
tages of the total variance, accounting for the variability explained
by each orthogonal principal component (PC), are as follows: PC

=905.26%: PC 2 = 4.27%: and PC 3 = 0.43%. representing the x, v,
and z axis of the aroma map, respectively.

" Discrimination between global aroma classes was significant at
P < 0.05.

" Discrimination between global aroma classes was significant at
P <001
™" Discrimination between global aroma classes was significant at
P < 0.001.

" Discrimination between global aroma classes was significant at
P < 0.0001.
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three-dimensional PCA yielded a principal component
model that explained over 99% of the differences in
identification elements with only two principal
components (Table 6). Quality factors (QFs), deter-
mined for each pairwise comparison, indicated
guantitative measures of relatedness or the distance
of relatedness between species. A QF of at least 2 is
generally a significant discrimination at about the 0.10
level of significance. None of the seven oak species
included in the analysis were closely related as
indicated by QFs > 4 for all pairwise comparisons.
Only two comparisons resulted in QFs < 6, but these
were still significantly different (P < 0.05). Never-
theless, the degree of difference provided good
indications of relative groupings of oak species. The
lowest QFs (range 4.96-25.70) were determined
between oaks in the red/black oak group (subgenus
Quercus section Lobatae Loudon), with the exception
of the Q. alba—Q. nigra comparison. The highest level
of difference occurred between white oak Q. alba and
two red oaks, Q. bucklevi and Q. virginiana with QFs
of 47 and 55, respectively. However, a high level of
significant difference also was found in comparisons
between red oaks, including Q. bucklevi-Q. falcata
and Q. falcata-Q. virginiana.

The production of an aroma map of the seven oaks
based on three-dimensional PCA data provided a
visual measure of relatedness between oak species by
the clustering, separation, and spatial distribution of
each species (Fig. 3). PCA data were run through an
algorithm that identified principal components in the
volatiles and separated oak species using Eigen values
on three axes. Eigen values describe the amount of
variance captured in the data for each individual
principal component isolated into individual axes. The
values were calculated by decomposing the covar-
iance or correlation matrix generated from the data.
The correlation matrix was a scaled version of the
covariance matrix such that every individual element
in the covariance matrix is divided by the product of
the standard deviations of the two co-varying
quantities to obtain the percentage Eigen values.
The principal component value for each axis indicated
the proportion (%) of the difference explained by that
principal component. The clustering of samples from
the two white oak species, Q. alba and Q. stellata,
were well separated on the x-axis (representing PC 1),
and generally lower than the majority of sample
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Fig. 3. Three-dimensional principal component analysis of electro-
nic aroma signature patterns differentiating sapwood volatiles of
seven oak species, including Q. alba. Q. bucklevi. Q. falcara. Q.
marilandica, Q. nigra, Q. stellata, and Q. virginiana. Eigen values,
describing the amount of variance captured in the data of each
individual principal component axis. were calculated by decompos-
ing the covariance or correlation matrix representing the dara. The
correlation matrix was a scaled version of the covariance matrix
such that every individual element in the covariance matrix is
divided by the product of the standard deviations of the two co-
varying quantities to obtain the percentage Eigen values. The PC
value for each axis indicates the proportion (%) of the difference
explained by that principal component.

clusters of the six red oak species on the y-axis
(representing PC 2). This was consistent with
observations of sensor response patterns for white
oak species being lower for most sensors than the red/
black oak species. Some samples of the two white oaks
also were well forward of the red/black oak species on
the z-axis, representing PC 3. By contrast, three red
oak/black oaks, Q. falcata, Q. marilandica, Q. nigra
were adjacent and tightly clustered. However, the
other two red/black oaks, Q. buckleyi and Q.
virginiana, were separated above the other red/black
oak clusters.

4. Discussion and conclusion

Electronic noses are clectrical-resistance modu-
lated, chemical-sensing devices containing a sensor
array capable of producing a digital fingerprint of
volatile organic compounds released from any source.
Conductive polymer sensor arrays take advantage of
differential responses of different conducting plastics
(within each sensor) to various chemical species in the
sample headspace, by producing a unique EASP
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specific to the analyte mixture. The multisensor array
provides an output response pattern analogous to a
combination lock that reflects the collective responses
of all sensors in the array. but sensor outputs are in
continuous values. The pattern-recognition algorithms
in the analysis software compare signature patterns
stored in the reference library to those of unknown
samples to look for similarities and differences in
these patterns. The differences are expressed digitally
as numerical values that are compared in matrix
format. The algorithms assign distributions of similar
elements found in principal components of the sample
that are in common with known patterns in the
reference library and make a determination of identity
based on that distribution. The response of each sensor
is based on the collective effect of the entire mixture of
compounds in the headspace on electrical-resistance
changes generated by adsorption of analytes to the
sensor. Sensor adsorption is determined by the specific
affinity of unique polymers in each sensor, the
specificity of chemical types, quantities, and molar
ratios of chemicals present in the sample mixture.
Conductive polymer analysis is a versatile new
electronic aroma detection (EAD) technology that has
been useful for numerous commercial applications in
industrial production, processing, and manufacturing
(Ouellette, 1999; Persaud et al., 1994; Pisanelli et al.,
1994). This paper has demonstrated the potential use
of CPA as a relatively nondestructive research tool for
identifying woody samples from diagnostic EASPs
derived from unique mixtures of volatile metabolites
released into sampled headspace. The main strengths
of CPA methods are the capability of identifying,
characterizing, and categorizing mixtures of volatiles
as a whole sample, without having to identify
individual chemical compounds present in the sample
mixture. Furthermore, utilizing application-specific
reference libraries (specific to sample types), and
tweaking discrimination-parameter values and recog-
nition specificity (confidence level) during neural net
training provided means of obtaining accurate
identifications without false positives, ambiguous
identifications, or misidentifications. Unsuccesstul
determinations were reduced by increasing the
number of elements allowed in error before unknown
identity was declared. The absence of false positives
and ambiguous determinations with CPA assures that
a sample will either be identified correctly or

unsuccessfully identified. Sample discrimination also
was improved by taking more than one sample from
each plant or woody part. collecting multiple samples
over time, increasing sample size to improve
representation, and using known samples from the
same geographical area from which unknown samples
were collected.

Primary identification elements, recognized by
global class distributions >95%. were useful for
identifying wood samples of tree species. Primary
elements represent species-specific mixtures of com-
pounds found in wood volatiles, such as essential oils,
that are unique to individual species. However,
secondary identification elements were more useful
for determining the relatedness between tree species
because secondary elements are shared between
different species and can be quantified using incidence
and distribution percentages. These quantitative
measures of secondary identification elements help
to characterize levels of relatedness between species in
terms of shared characters (production of similar or
related mixtures of volatile compounds in this case),
and thus may provide indications of relatedness in
biosynthetic pathways utilized and volatile metabo-
lites produced. Such information may be useful in
chemotaxonomic studies by facilitating establishment
of phylogenetic, biochemical, or genetic relationships
between tree species. In this way, CPA data may
compliment genetic homology data by providing
indications of expressed chemical relatedness between
species.

The high incidence of secondary identification
elements among angiosperm species suggests that
there are a large number of similar metabolites that are
shared between individual species. Many shared
secondary elements occur across family lines, but
secondary elements also are common between species
within individual plant families. Minor secondary
elements, both species-specific and nonspecific,
generally occurred at higher levels of incidence than
major secondary elements. Minor secondary elements
probably represent very common metabolites shared
among a wide range of plants that utilize similar
metabolic pathways for biosynthesis. By contrast,
major secondary elements are likely indicative of
more specific metabolites such as volatile oils, lignin
and suberin derivatives, resins. bark exudates,
terpenes, alkaloids, and other secondary metabolites
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that yield unique mixtures of compounds for specific
functions in individual species.

The high QF values obtained from pairwise
comparisons of seven oak species using three-
dimensional PCA indicated that none of these oak
species were closely related. QF values greater that 2
generally are required to determine that volatiles from
two samples represent distinct species. All compar-
isons of volatiles from oak species in this study
indicated high levels of difference among the species.
This was an expected result, although the apparent
closer relationship between certain species was not
expected. The limited analyses of EASPs and three-
dimensional PCA for these oak species provide
evidence indicating that distinct differences in head-
space volatiles of oaks could distinguish between
species in the white oak group (subgenus Quercus
section Quercus) from those in the red/black oak
group (subgenus Quercus section Lobatae Loudon) as
defined by Nixon (1993). The significant differences
demonstrated here in EASPs between Quercus species
in the white oak and red/black oak groups provide
strong indication that there are unique mixtures of
volatiles, containing organic compounds representing
common identification elements specific to each
Quercus group, that may be used to distinguish,
characterize, and categorize oak species within one of
these major groups. The results are consistent with
delineations based on morphological and ontological
criteria that are currently used to define oaks within the
two groups.

The lowest QF value was determined for the
comparison between Q. bucklevi and Q. virginiana
providing evidence that these species are the two most
closely related oaks of the seven species included in
the analysis. The highest QF value was determined
between Q. alba and Q. virginiana (coastal live oak),
suggesting that these were the most distantly related
oak species. These data indicate that coastal live oak is
most closely related to a red oak species and least
related to a white oak species. Coastal live oak is
considered by some authorities to be a member of the
white oak group due to macroscopic leaf and acorn
characters that are shared with white oak species.
However, Q. virginiana is intermediate between white
oaks and red oaks in the microscopic structure of its
vessel elements. Unlike white oaks which have large
pores containing abundant tyloses with a ring porous
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structure, coastal live oaks have semi-ring porous
wood structure and tyloses are sparse in their vessels.
This unique ring porosity with relatively small pores
scattered across the entire ring, is a structural reason
that partially explains why live oaks are more
susceptible to oak wilt disease than white oaks. The
biochemistry of host-defense in live oak also is more
similar to red oaks than white oaks, indicated by the
high susceptibility of live oak to infection by the oak
wilt pathogen, Ceratocystis fagacearum (T.W. Bretz)
J. Hunt (Wilson, 2001:; Wilson and Lester, 2002). Most
white oaks such as post oak (Q. stellata Wangenh.) and
overcup oak (Q. Ivrata Walter) are highly resistant to
this vascular wilt disease (Wilson, 2001), providing
further evidence that the host-defense metabolism of
coastal live oak, with its associated volatiles, is more
closely related to those of red oaks. The results in this
study tend to support this conclusion.

Some important limitations of CPA for wood
identifications should be noted. For example, the
sources of woody material used in constructing
recognition files and reference libraries have a
significant effect on the ability to identify unknown
samples. For best results, the sources of reference
materials used in building recognition files should be
obtained from the same geographical area where
future unknown samples of that type are to be
collected. Considerable variability in aroma profiles
an result from wood of the same species collected
from widely separated regions. If a comprehensive
reference library for a wider geographical region is
desired, reference samples should be collected
throughout the region so that they are representative
of the entire region for any tree species established in
the reference library. A general rule is to collect a
minimum of 10 distinct samples per species from each
sampling area within the collecting region to define
known species entered into the reference library.
Specialized reference libraries for very specific
applications generally are more useful and effective
than libraries developed for broad applications
because they provide more accurate determinations,
shorter neural net training times, and lower instances
of nonrecognition and incorrect (false positive)
results. Other limitations of CPA include the inability
to identify samples not represented in the reference
library (such as woody samples contaminated with
microorganisms or samples with excess moisture or
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desiccation), the inability to identify individual
chemical species within sample mixtures or make
reliable quantitative determinations, and the time
requirement for building head space prior to sample
analyses. However, subsequent research has indicated
that CPA can be used to identify aged wood specimens
up to 40 years old (that release greatly attenuated
volatiles), when these specimens are properly rehy-
drated (Wilson and Oberle, unpublished data).

This paper demonstrates the usefulness of CPA for
woody plant and wood sample identifications. CPA
technology is a potentially useful new research tool for
forest biologists, ecologists, pathologists, research
foresters and other scientists studying the processes,
functions, Interactions, and stability of forests and
forested ecosystems. CPA methods are most useful for
identifying biotic components (particularly woody
plants and small organisms) in forested stands that
interact and contribute to ecosystem functions. For
example, forest biologists and ecologists could use
CPA to study forest ecosystem processes and functions
such as nutrient cycling, biotic decomposition of
woody plant materials, symbiotic associations, biolo-
gical interactions and interrelationships between
organisms, forest structure and stand composition,
and the roles that organisms play in forest ecosystem
dynamics. CPA also might be useful to forest
pathologists and entomologists to study biologically
active species such as insect pests and pathogenic
microbes that interact with woody materials in forest
ecosystems and cause changes in stand structure and
ecosystem functions over time that ultimately affect
forest health, biodiversity, sustainability of future
productivity, forest stability, and succession. Early
detection is useful in the forest products industry for
mitigating losses associated with lumber defects
caused by differential shrinkage when hardwoods
are infected by wetwood bacteria (Verkasalo et al.,
1993). Many hardwood species are susceptible to
infections by wetwood bacteria that cause lumber
defects (Carpenter et al., 1989). Disruptive forest pests
that cause adverse effects on forest stands are often
difficult to identify because they are hidden inside of
internal galleries (insects) or rarely produce fruiting
structures (fungi) on the external surfaces of trees or
detached tree parts. Thus, studies of the growth and
development of microbial communities within wood
tissues could be investigated more effectively with

CPA than with genetic tools such as molecular
markers and primers, because these hidden organisms
“an be detected and identified from the unique volatile
compounds they release from wood. Information
acquired from such studies ultimately could be used to
facilitate management of forested stands and ecosys-
tems.
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